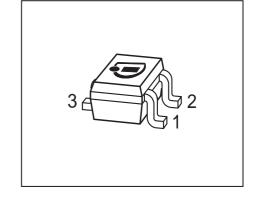


NPN Silicon RF Transistor*

- For low distortionbroadband amplifiers and oscillators up to 2 GHz at collector currents from 5 mA to 30 mA
- Pb-free (RoHS compliant) package 1)
- Qualified according AEC Q101
- * Short term description

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Marking	Pir	n Configura	tion	Package
BFR93AW	R2s	1=B	2=E	3=C	SOT323


Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\sf CEO}$	12	V
Collector-emitter voltage	V_{CES}	20	
Collector-base voltage	V_{CBO}	20	
Emitter-base voltage	V_{EBO}	2	
Collector current	$I_{\mathbb{C}}$	90	mA
Base current	I_{B}	9	
Total power dissipation ²⁾	P_{tot}	300	mW
<i>T</i> _S ≤ 104 °C			
Junction temperature	T_{i}	150	°C
Ambient temperature	T_{A}	-65 150	
Storage temperature	$T_{\rm stq}$	-65 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ³⁾	R _{thJS}	≤ 155	K/W

¹Pb-containing package may be available upon special request

 $^{^2}T_{\mbox{\scriptsize S}}$ is measured on the collector lead at the soldering point to the pcb

 $^{^3}$ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics	•			•	•
Collector-emitter breakdown voltage	V _{(BR)CEO}	12	-	-	V
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$, ,				
Collector-emitter cutoff current	I _{CES}	-	-	100	μA
$V_{CE} = 20 \text{ V}, V_{BE} = 0$					
Collector-base cutoff current	I _{CBO}	-	-	100	nA
$V_{\text{CB}} = 10 \text{ V}, I_{\text{E}} = 0$					
Emitter-base cutoff current	I _{EBO}	-	-	10	μA
$V_{\rm EB}$ = 2.5 V, $I_{\rm C}$ = 0					
DC current gain-	h _{FE}	70	100	140	-
$I_{\rm C}$ = 30 mA, $V_{\rm CE}$ = 8 V, pulse measured					

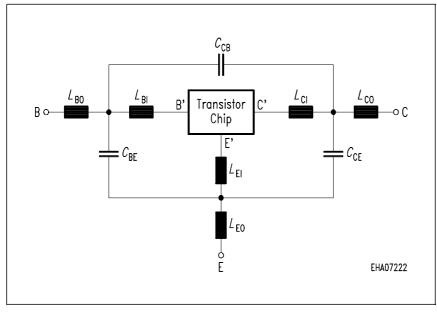
Electrical Characteristics at $T_{\Delta} = 25^{\circ}$ C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sampling	g)	1		1	1
Transition frequency	f_{T}	4.5	6	-	GHz
$I_{\rm C}$ = 15 mA, $V_{\rm CE}$ = 8 V, f = 500 MHz					
Collector-base capacitance	C _{cb}	-	0.58	0.8	pF
$V_{\text{CB}} = 10 \text{ V}, f = 1 \text{ MHz}, V_{\text{BE}} = 0 ,$					
emitter grounded					
Collector emitter capacitance	C _{ce}	-	0.3	-	
$V_{CE} = 10 \text{ V}, f = 1 \text{ MHz}, V_{BE} = 0$,					
base grounded					
Emitter-base capacitance	C _{eb}	-	1.9	-	
$V_{\text{EB}} = 0.5 \text{ V}, f = 1 \text{ MHz}, V_{\text{CB}} = 0$,					
collector grounded					
Noise figure	F				dB
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,					
f = 900 MHz		-	1.5	-	
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,					
f = 1.8 GHz		-	2.6	-	
Power gain, maximum available ¹⁾	G _{ma}				
$I_{\rm C}$ = 30 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$, $Z_{\rm L}$ = $Z_{\rm Lopt}$,					
f = 900 MHz		-	15.5	-	
$I_{\rm C}$ = 30 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$, $Z_{\rm L}$ = $Z_{\rm Lopt}$,					
f = 1.8 GHz		-	10.5	-	
Transducer gain	S _{21e} ²				dB
$I_{\rm C}$ = 30 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,					
f = 900 MHz		-	13	-	
$I_{\rm C}$ = 30 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,					
f = 1.8 MHz		-	7.5	_	

3

 $^{^{1}}G_{\text{ma}} = |S_{21e}/S_{12e}| (k-(k^{2}-1)^{1/2})$

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):


Transistor Chip Data:

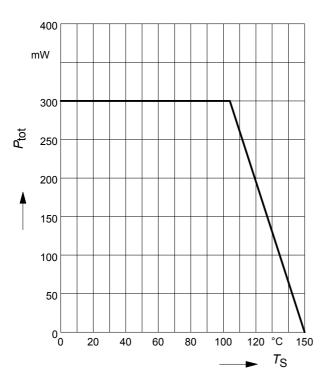
8.6752	fA	BF =	137.63	-	NF =	0.93633	-
20.011	V	IKF =	0.33395	Α	ISE =	2619.3	fΑ
1.5466	-	BR =	59	-	NR =	0.88761	-
26.834	V	IKR =	0.015129	Α	ISC =	0.70823	fΑ
1.95	-	RB =	7.2326	Ω	IRB =	0.043806	mΑ
3.4649	Ω	RE =	1.0075	-	RC =	0.13193	Ω
3.1538	fF	VJE =	0.70393	V	MJE =	0.5071	-
33.388	ps	XTF =	0.28319	-	VTF =	0.17765	V
2.5184	mA	PTF =	0	deg	CJC =	1039.5	fF
0.72744	V	MJC =	0.34565	-	XCJC =	0.21442	-
1.1061	ns	CJS =	0	fF	VJS =	0.75	V
0	-	XTB =	0	-	EG =	1.11	eV
3	-	FC =	0.75935		TNOM	300	K
	20.011 1.5466 26.834 1.95 3.4649 3.1538 33.388 2.5184 0.72744 1.1061 0	$\begin{array}{ccccc} 20.011 & V \\ 1.5466 & - \\ 26.834 & V \\ 1.95 & - \\ 3.4649 & \Omega \\ 3.1538 & \text{fF} \\ 33.388 & \text{ps} \\ 2.5184 & \text{mA} \\ 0.72744 & V \\ 1.1061 & \text{ns} \\ 0 & - \\ \end{array}$	20.011 V IKF = 1.5466 - BR = 26.834 V IKR = 1.95 - RB = 3.4649 Ω RE = 3.1538 fF VJE = 33.388 ps XTF = 2.5184 mA PTF = 0.72744 V MJC = 1.1061 ns CJS = 0 - XTB =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.011 V IKF = 0.33395 A 1.5466 - BR = 59 - 26.834 V IKR = 0.015129 A 1.95 - RB = 7.2326 Ω 3.4649 Ω RE = 1.0075 - 3.1538 fF VJE = 0.70393 V 33.388 ps XTF = 0.28319 - 2.5184 mA PTF = 0 deg 0.72744 V MJC = 0.34565 - 1.1061 ns CJS = 0 fF	20.011 V IKF = 0.33395 A ISE = 1.5466 - BR = 59 - NR = 26.834 V IKR = 0.015129 A ISC = 1.95 - RB = 7.2326 Ω IRB = 3.4649 Ω RE = 1.0075 - RC = 3.1538 fF VJE = 0.70393 V MJE = 33.388 ps XTF = 0.28319 - VTF = 2.5184 mA PTF = 0 deg CJC = 0.72744 V MJC = 0.34565 - XCJC = 1.1061 ns CJS = 0 fF VJS = 0 - EG = 0.70393 C TTB = 0 TTB	20.011 V IKF = 0.33395 A ISE = 2619.3 1.5466 - BR = 59 - NR = 0.88761 26.834 V IKR = 0.015129 A ISC = 0.70823 1.95 - RB = 7.2326 Ω IRB = 0.043806 3.4649 Ω RE = 1.0075 - RC = 0.13193 3.1538 fF VJE = 0.70393 V MJE = 0.5071 33.388 ps XTF = 0.28319 - VTF = 0.17765 2.5184 mA PTF = 0 deg CJC = 1039.5 0.72744 V MJC = 0.34565 - XCJC = 0.21442 1.1061 ns CJS = 0 fF VJS = 0.75 0 - XTB = 0 - EG = 1.11

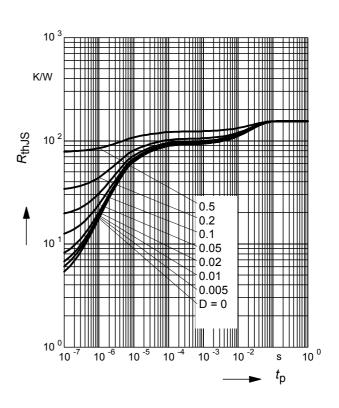
All parameters are ready to use, no scalling is necessary. Extracted on behalf of Infineon Technologies AG by: Institut für Mobil- und Satellitentechnik (IMST)

4

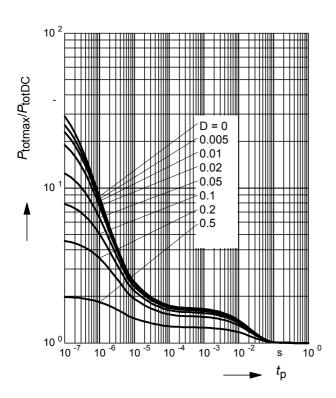
Package Equivalent Circuit:

L _{BI} =	0.57	nΗ
L _{BO} =	0.4	nΗ
L _{EI} =	0.43	nΗ
L _{EO} =	0.5	nΗ
L _{CI} =	0	nΗ
L _{CO} =	0.41	nΗ
C _{BE} =	61	fF
C _{CB} =	101	fF
C _{CE} =	175	fF
Valid up	to 6GHz	

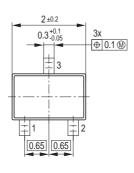

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com

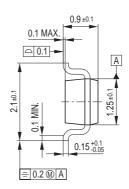

2007-04-26

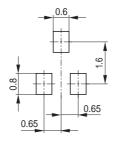
Total power dissipation $P_{\text{tot}} = f(T_{\text{S}})$

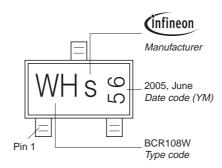

Permissible Pulse Load $R_{thJS} = f(t_p)$

Permissible Pulse Load

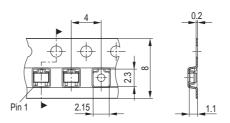

$$P_{\text{totmax}}/P_{\text{totDC}} = f(t_{p})$$




Package Outline



Foot Print



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

6

Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

7

2007-04-26